Истории о великих математиках

«Успенский не боялся объяснять простые вещи»

Владимир Андреевич Успенский

(1930–2018)


Математик, лингвист, публицист, популяризатор науки. Автор работ по математической логике и лингвистике, а также книги мемуаров «Труды по нематематике». Инициатор реформы лингвистического образования в России. Доктор физико-математических наук, профессор, заслуженный профессор Московского университета.


Об импровизациях


Его лекции были совершенно не похожи на другие лекции. Он никогда не читал по бумажке — об этом даже речи быть не могло. Я думаю, что он и сам не знал, чем закончится лекция. То есть это всегда была некоторая импровизация с участием слушателей. Он смотрел на их реакцию, задавал вопросы, а иногда они выходили к доске и что-то рассказывали. То есть шел некоторый диалог. В одной из своих книжек он вспоминал, что, читая свой первый спецкурс, он приходил, что-то рассказывал, а потом, придя домой, записывал конспект сказанного. То есть человек думал на месте, а не пы­тался излагать что-то заранее подготовленное. Это было такое творчество в момент лекции. И аудитория это понимала. 

О феодальной структуре 


Как-то Успенский мне объяснял устройство советской научной жизни — что это такая феодальная структура. Каждый начальник, с одной стороны, поль­зуется услугами своих вассалов, а с другой стороны, защищает их в борьбе с другими феодалами, которые могут их съесть. И вот Успенский умело находил для кафедры логики разных защитников. 

О том, почему Успенский не подписал письмо 99-ти


Любое хорошее математическое рассуждение состоит в том, что мы смотрим на предмет с другой стороны — стороны, с которой он становится очевидным. И вот это умение он использовал в жизни, как будто смотря заново на окру­жающую действительность. Кстати, благодаря этому отчасти он понимал, как устроена советская жизнь. Он не был диссидентом — скажем, письмо в защиту Есенина-Вольпина он осторожно не подписал, объясняя это тем, что у него не хватит сил потом не каяться за это, а подписывать и каяться — это еще хуже, чем не подписывать. Он понимал, как все устроено, и это ему помогло в его административной деятельности при создании отделения и кафедры. 

О картошке


Владимир Успенский на прогулке во время семинара Евгения Дынкина. 1954 год © Cornell University Library

Есть история, как, когда он был комсоргом, ему поручили послать аспирантов на картошку. Посылать кого бы то ни было на картошку ему очень не хотелось, и он нашел выход, издав распоряжение, что каждый аспирант должен поехать на картошку, представив письмо от своего научного руководителя о том, что это не повредит подготовке диссертации. Администрация была в безумной злобе, но придраться было не к чему, ведь действительно главное занятие аспиранта — это подготовка диссертации. С другой стороны, нельзя обвинять научного руководителя в том, что он не дает такого письма. 

О принципе Дон Кихота


Он как-то мне сказал, что есть такой принцип Дон Кихота: если последствия действий неясны, то нужно действовать смело и благородно. И потом рас­сказал историю про Есенина-Вольпина, который работал в ВИНИТИ   — в лаборатории, начальником которой был Успенский. А над ним начальником был человек по фамилии Васильев, прообраз Яконова из «Круга первого»  . А директором ВИНИТИ был Михайлов. И как-то вызывает Васильев Успен­ского и говорит, что ему от Михайлова пришло указание приготовить проект приказа об увольнении Есенина-Вольпина. После чего он показал Успенскому проект приказа в папке, а затем, оставив папку открытой, ушел из комнаты. И тут Успенский взял этот приказ, положил себе в карман и папку закрыл. Васильев пошел к Михайлову — выяснилось, что приказа нету. Но никто из них — ни Васильев, ни Михайлов — не потребовал издать приказ заново, и после этого дело было временно заморожено. Наверное, теперешним слушателям это непонятно, но в советское время такое действие выглядело совершенно вызывающе. 

О том, как Успенский стал учеником Колмогорова


Владимир Успенский с портретом Андрея Колмогорова. Фрагмент обложки первой книги Владимира Успенского из серии «Труды по нематематике» © Объединенное гуманитарное издательство; фонд «Математические этюды»

Успенский был победителем олимпиад для школьников. После этого он стал ходить в кружок такого замечательного математика Евгения Борисовича Дынкина. Поступив на мехмат, Успенский продолжал заниматься с Дынкиным, а потом вместе с ним преподавал школьникам. Дынкин рассказал о нем Колмогорову, и Успенский стал учеником Колмогорова — как он сам говорил, это было одно из самых важных событий в его жизни. В начале 50-х годов у Колмогорова было много учеников — это был период расцвета его матема­тической педагогической деятельности. И вот Успенский попал в их число и с тех пор работал на мехмате — сначала в разных лабораториях, а потом, когда при некотором его участии была основана кафедра математической логики, на ней — и до самой смерти.

О том, что такое падеж


Объявив о первом семинаре для гуманитариев на филологическом факультете, он пришел к Колмогорову и спросил, что бы такое с ними разбирать. Колмо­горов сразу предложил две темы: обсудить с участниками семинара, что такое падеж и что такое ямб. Что здесь поучительно: оба слова были хорошо извест­ны и никакому гуманитарию не пришло бы в голову спрашивать, что такое падеж. Но Колмогоров и Успенский обратили внимание на то, что это не сов­сем ясно. В школьном курсе говорится, что в русском языке шесть падежей. А что это значит? Допустим, кто-то возражает, что их не шесть. Как убедить в своей правоте? Или наоборот, как доказать, что их шесть? На самом деле это не чисто словесное упражнение. Когда говорят «в лесу», то какой это падеж? В одной песне есть строчка «Мы увидимся все в позаброшенном аэропорте…» — она рифмуется с предыдущей строкой. Но на самом деле стандартное слово­изменение — «в аэропорту». И вот спрашивается, какой это падеж. То же самое с ямбом: что значит ямб? Считается, что каждый второй слог должен быть ударный, а это ведь не так. Слово «велосипедист» вполне может быть в сти­хотворении, хотя из всех слогов там только один ударный. То есть нужно четко определить, что это значит. И четко сформулированного определения до Ус­пенского и Колмогорова просто не было. 

О том, зачем Успенский преподавал математику гуманитариям


Владимир Успенский во время лекции © Механико-математический факультет МГУ им. М. В. Ломоносова

В «Игре в бисер» герой Гессе Йозеф Кнехт, становясь взрослее и мудрее, начинает работать со все более младшими слушателями и в конце концов преподает детям. Так же и Успенский сначала преподавал математическую логику математикам, а потом стал преподавать математику гуманитариям. Я прошу прощения за такое сравнение, но гуманитарии действительно с трудом понимают разные простые математические вещи. И он относился к ним как к неразумным детям, которые не виноваты в том, что они нера­зумны, но которых надо постепенно вразумлять. 

У него была идея занятий математикой при создании ОСИПЛа и ОТИПЛа, и многие студенты вспоминали об этом с ненавистью, потому что не пони­мали, зачем им это нужно. Но Успенский говорил, что это очень важно, что это тренировка и приучение людей к структурному мышлению. Что гуманитарии должны четко понимать три вещи: имеет ли смысл высказывание, истинно ли оно и поняли ли они его. Он объяснял это так: если в гуманитарных науках делают какое-нибудь высказывание — например, что это произведение отно­сится к романтизму, — то заранее считается очевидным, что это высказывание имеет смысл, а вопрос о том, что, собственно, имеется в виду, задавать непри­лично. В то время как в естественных науках и математике — особенно если вводится новое слово — автор обязан определить, что он имеет в виду, а если он делает утверждение, то он обязан доказать это утверждение, а не просто публиковать его в ожидании, что другие начнут с ним спорить. Успенский понимал на самом деле, что есть два разных взгляда на вещи и разные подходы. Но считал, что гуманитариям важно понимать существование другого взгляда, и подчеркивал это. 

О просветительстве и популяризаторстве


Успенский постоянно занимался просветительством. Не то что он ходил и думал, кого бы просветить, но он старался писать популярно и выступать на популярные темы: что такое математическое доказательство, что такое аксиоматический метод, что такое парадокс. И в конце он собрал эти свои выступления в книжке, которая называется «Апология математики». Она имела удивительный для меня успех. Я, честно говоря, скептически относился к инте­ресу гуманитариев к математическим наукам и был удивлен тем, что эту книгу прочли и заметили. 

Успенский был большим любителем разных историй и не боялся объяснять простые вещи. Когда пишешь какую-нибудь популярную статью, всегда ощущаешь неловкость, что надо объяснять подробно, разжевывать то, что все знают. Например, невозможно объяснять популярно и подробно то, что Луна движется вокруг Земли. А между тем если спросить у обычных людей, почему Луна видна не полностью, а в виде серпа, то очень многие ответят: это потому, что на нее падает тень от Земли. Так вот, Успенский не боялся объяснять простое подробно, настойчиво, повторять это разными словами. 

О комплексе неполноценности и умении прояснять систему понятий


Владимир Успенский во время лекции © Механико-математический факультет МГУ им. М. В. Ломоносова

Если оценивать математиков в терминах математической силы — сильный математик, сильный олимпиадник, впервые решил конкретные трудные задачи, — то Успенский таковым не был. Его лучшие результаты были получены в кандидатской диссертации и немного опередили то, что делалось в этом отношении за границей. Но, к сожалению, текст диссертации был недоступен, и это мало повлияло на мировую науку. Он испытывал по этому поводу некоторый комплекс неполноценности и часто говорил, что бывают великие математики, которые занимаются чем-то сложным, а он ненастоящий математик. Я думаю, что на самом деле он видел свою заслугу в прояснении системы понятий, в правильном взгляде на вещи. Он любил цитировать старинную китайскую мудрость о том, что очень важно вещи правильно именовать. В некоторых случаях мне даже казалось, что эти попытки внедрить правильную терминологию безнадежны и только запутывают больше. Но он настаивал и считал это очень важным. 

О парадоксах и любопытстве


Владимир Успенский и Михаил Поливанов. 1950-е годы © Из личного архива Владимира Успенского

Он любил парадоксальные истории и был исключительным наблюдателем, смотрел на окружающую действительность с большим любопытством, интересом и удивлением и замечал то, что другие не замечают. В свое время меня поразил один случай. В начале 80-х годов я участвовал в подготовке радиопередач для школьников. И там была песенка, начинающаяся со слов:

Однажды Лобачевский
Думал, кутаясь в пальто,
Как мир прямолинеен —
Видно, что-то здесь не то.
Но он вгляделся пристальней
В загадочную высь,
И там все параллельные
Его пересеклись.

В подготовке этой передачи участвовало несколько человек, и, естественно, все мы слушали эту песню, но ни один из нас не заметил, что это совершенный абсурд. По определению параллельные прямые — это прямые, которые не пере­секаются, а у Лобачевского на самом деле неверно другое: в его геометрии несколько прямых, параллельных данной, проходящих через одну точку. Успенский это заметил, хотя я не понимаю, как он мог это заметить. 

Он объяснял, что в современной математике короткие слова используются для общих понятий, а если понятие более частное, то это короткое слово снаб­жа­ется уточнениями в виде прилагательных. И дальше он объяснял, что вот раньше был просто мед, а если вы теперь купите баночку, то на ней будет написано: «Мед пчелиный натуральный». Тем самым понятие меда резерви­руется для чего-то более общего, не обязательно пчелиного или натурального.

О формулировках


Лекция лауреата премии «Просветитель» Владимира Успенского в Государственном центре современного искусства в Нижнем Новгороде. 2010 год © Премия «Просветитель»

Он любил интересные формулировки. Например, что такое доказательство? Доказательство, говорил он, — это рассуждение, убеждающее нас настолько, что мы готовы с его помощью убеждать других. И вот действительно, это четкая и точная формулировка. Еще он сказал однажды, что источник конфликтов не в том, что одни считают, что что-то хорошо, а другие считают, что что-то плохо: чаще люди соглашаются с тем, что и то, и это хорошо. Но из двух хороших вещей одни считают важнее одну, а другие — другую. 

Когда его спрашивали, как он стал математиком, он говорил, что если бы не время и не место, то он стал бы не математиком, а, например, юристом по конституционному или каноническому праву. Это некоторое преувели­чение, но тем не менее склонность к четким формулировкам и формальным загогулинам у него, безусловно, имелась.