Мировые новости математики

Искусственный интеллект AlphaZero открыл новый способ умножения матриц

Фото: technologyreview.com


Задача об умножении матриц лежит в основе самых разных приложений от вывода изображения на экран до моделирования сложных физических процессов, а также обучения самого искусственного интеллекта. Оптимизация решения этой задачи помогла бы упростить выполнение множества компьютерных операций, сократив расходы и обеспечив экономию энергии. Несмотря на повсеместное распространение задачи, она до сих пор недостаточно изучена.


Задача на умножение матриц кажется относительно простой, но она существенно усложняется при попытке найти ускоренный метод её решения, и это одна из открытых проблем в информатике. Предполагается, что число доступных способов умножения матриц превосходит количество атомов во вселенной — в некоторых случаях до 10³³ вариантов.


Чтобы «заинтересовать» нейросеть AlphaTensor, новую версию AlphaZero, задачу об умножении матриц превратили в своего рода настольную игру, каждое действие умножения сопоставили игровому ходу, а ИИ получал награду за победу с минимальным числом ходов. В результате AlphaTensor нашёл новый способ умножения матриц 4×4, более эффективный, чем в 1969 году предложил немецкий математик Фолькер Штрассен (Volker Strassen). Базовый способ предполагает решение задачи за 64 шага, у Штрассена это 49 шагов, а AlphaTensor справляется за 47. В целом ИИ усовершенствовал алгоритмы для матриц более 70 размеров: при размере 9×9 число шагов уменьшилось с 511 до 498, а при 11×11 — с 919 до 896. В ряде других случаев AlphaTensor повторил лучшие из известных алгоритмов.


Получив результаты, инженеры DeepMind решили адаптировать их для ускорителей NVIDIA V100 и Google TPU, которые чаще всего используются в машинном обучении. Выяснилось, что предложенные AlphaTensor методы работают на 10–20 % быстрее традиционных.